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In recent years a detailed analysis has been given and a complete elucidation was 

achieved of the meaning of many papers published on crack theory. 
The investigation of phenomena of crack propagation in brittle solids is connected, on 

the one hand, with combinations of methods and the formulations of classical elasticity 
theory, and on the other hand, with taking account of some special physical effects asso+ 

ciated with the formation of dicontinuities within the deformable solids. 
The complexity of this problem generates difficulties in comprehension and some con- 

fusion among specialists accustomed to be active in just one of the mentioned scientific 
directions. 

A paper by Raizer fl1 has appeared in the “Uspekhi Fizicheskikh Nauk” ( l ) which 
attempts to clarify for the readers of that journal the state of crack theory, and simulta- 

neously to refute a number of published critical remarks [2- 51. 
A number of well-known statements from crack theory are explained correctly in the 

paper of Raizer. 
Meanwhile, this paper can lead the reader away from a correct understanding of the fun- 

damental simple ideas on which crack theory is based 
To clarify the essence of the matter, let us examine the problem of plane strain of a 

body having an elliptical cutout (Fig. 1). Let the 
Y ratio between the ellipse semi-axes be b/Z < 1. 

1 P Let p denote the external tensile stress “at infi- 

’ !I 
nity”. Normal and tangential stresses vanish at the 

iLj_l 

1 I 
A 

surface of the hole. 

-I l? I s Let us first examine this problem within the frame- 

C-W 

work of the model of an elastic body for adiabatic 
’ 

processes (** ) (only the equilibrium equations in the 
i t P 

presence of a definiteffnite connection between the 

Fig. 1 stress and strain tensors, Hooke’s Law, must be solved). 
As is known, this problem can be solved by two me- 

thods in the theory of small strains. 

I. The “exact” solution in which the boundary conditions are satisfied on the con- 

tour of the cutout in the initial unstrained state. 
II. The approximate linearized solution in which the boundary conditions on the 

contour of the elliptical cutout are reduced on the basis of the property b/l < i and are 
satisfied on two sides of a segment (- I, + 2) of the s-axis. 

l ) E d i t or i a 1 N o t e : “Progress in Physics”, the U. S. S. R. Monthly. 

l * ) An analogous situation holds for isothermal processes if the free energy replaces the 
internal energy. 
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III. Within the scope of elasticity theory, this problem can be considered in a more 
exact formulation than I. without changing the equations of state or refining it (nonlinear 

elasticity theory), when the boundary conditions on the cutout are satisfied on the strained 
surface. 

This last problem is mathematically difficult, but this is negligible from the viewpoint 
of the physical essence of this formulation. This problem has a unique solution in the 
mathematical formulations I and II, and is easily solved for any p (I and b are given 

constants), For small p the solutions in formulations I and III are quite close. 
The solutions I and II are close everywhere with the exception of small neighborhoods 

of the points A and A’(Fig, 1). At these points the stress components oyy are always 

finite in the solutions of I, and always tend to infinity in the solutions of II on approach- 
ing the point A , according to the law 

where E, Y are the elastic modulus and Poisson’s ratio, respectively. 
For these two solutions the character of the distribution uyy (z) along the s-axis is 

shown in Fig. 2. It is hence clear that the approximate fornl,Jation II results in a large 

dYY 

numerical error near the points A and A’ ; however, 

I 

L 

it should be emphasized that the results of the solu- 

I7 tions of I and II are close outside small neighborhoods 
of these points and that the total elastic energy cal- 

3J 

culated for the solutions of the appropriate problem 

P 
of a finite body is practically identical in the formu- 
lations I and II. Moreover, it is very important that 

.r this energy be different for fixed b and different i, . 

Fig. 2 
The first fundamental deduction hence follows : 

1. To solve the elastic problem. linearization is 

not applicable near the points A and A’, but it yields a correct result for the total energy. 

Let us now turn to the question of the correspondence between theory and experiment 

for materials whose strain is described within the scope of models of elasticity theory. 

For very small p the solution computed by method I corresponds well qualitatively 

and quantitatively with experiment and describes the effect of stress concentration near 
the points A and A’. 

Computations by method II differ from the computations by method 1 only in close 
proximity of the points A and A’, where this computation yields clearly erroneous results, 

The second fundamental deduction hence follows : 
2. The unboundedness of the stresses at the ends li and A’ in the method of the Solu- 

tion II is not the result of deficiencies in the physical formulation of the problem, 
the physical modelling, but is a result of the approximate method of solving this problem. 

For small p t:le problem of stress concentration is solved by elasticity theory methods 
in the formulat.ion I. The appearance of infinite stresses near the slit ends is not confus- 
ing in the formulation II, and it does not come to mind to use the formulation II with 
the introduction of suitable artificial surface cohesive forces applied to the lips of the 

slit and assuring finiteness of the stresses to achieve the “physics” of the modelling. It 
is quite clear that the approximate method of the Solution II is inadmissible for the 
description of the details of strain near the ends where stress concentration occurs. 
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If it is required to calculate the total elastic energy, then despite the approximateness 
of the method of Solution 11,a true answer can be obtained by using this solution. And 
in particular, the difference between the energies for twovalues of the slit length 1 and 
1 + Al can be found quite accurately. 

The above is simple and evident for an elliptical cutout, however all these deductions 

are consehred for thin cutouts of any shape with finite curvature in finite solids under a 

complex system of external loadings. 
Let us consider yet another idealized case when the edge of the initial cutout is, in the 

absence of loadings, a corner or caspidal point within the scope of continuum mechanics. 
In this case, the stress components are generally infinite at the corner point in the formu- 

lation I, but if we turn to the more exact formulation III.it can be shown that for the 
stresses there is no singularity with an asymptotic law of the form (1) in the solution of 

this elastic problem near a ctisp. 
Stresses at a caspidal point will be infinite with an asymptotic law of the form (1). in 

the solution based on the approximate formulation II. 
Therefore, for sufficiently small external loadings w i t h i n the s c o p e o f e 1 as - 

ticity theory, the problem can be posed and solved in good conformity with the 

reality of stress concentration near the sharply curved parts of the contours of the body 

boundaries. In this connection a complete highly developed area of elasticity theory 

devoted to these problems exists. The formulation II is not applied in this area, and 
naturally no surface cohesive forces are introduced on the body boundaries. 

What happens when the external loadings of type P increase ? As p grows the magni- 

tudes of the stresses and their gradients increase at the stress concentration locations. 
As is known, for sufficiently large, sharply changing stresses the mechanical macroscopic 

properties of real solids change,plasticity effects start to appear, diverse defects originate 

in the structure of the macroscopic particles, etc. 

In this connection, as the loading !) grows the mechanical state of the particles at the 
stress concentration locations is not described within the scope of Hooke’s linear elasti- 
city theory in either the exact formulation I or the ultra-exact formulation III even long 

before the appearance of the actual discontinuities (i.e. crack growth). However, for 
brittle solids experience shows that the equations of state are violated only in quite small 
domains near the edges of the developing discontinuiries. 

At the present time there are only few theoretical results on the structure and mecha- 
nisms of interaction within domains with high stress concentrations. 

However, it can be affirmed with complete certainty that this mechanism may be 

different ; this can be associated with the fracture energy y‘ in the origination of new 
areas of discontinuity for brittle fracture (silicate glass, quartz) or with the formation of 
thin plastic strain layers on the lips of the discontinuity for quasi-brittle fracture (metals 

in which ye@@> y). The size of the domains in which the model of an elastic body is 
not applicable, can be on the order of the interatomic spacings for some materials, and 
on the order of millimeters, or even centimeters, for others. 

The shape of the plastic domains can also be different; in the plane problem these 
domains can have a shape similar to a circle or to a narrow layer of length d commen- 
surate with the slit length 2~; d/l _ 1 or d/l (( 1. These plastic layers can be arranged 
as a continuation of the crack clearance or can be arranged symmetrically at an angle 
- 45” to the crack direction, etc. [G, 71. 
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In this connection, let us note the paper [8] in which an exact solution is given of the 
elastoplastic problem for the antiplane strain of a space containing a slit, at whose ends 
finite plastic domains are formed. Not only is a solution of the elastic problem given in 

this paper, but the shape of the plastic zone is also found, and the stress and strain field 
within the plastic domain is constructed. 

In addition,in the paper [9] a numerical solution of the elastoplastic solution in the 

case of a plane stress state and plane strain under tension was obtained. Let US mention 
the interesting fact that if the Dugdale hypothesis were verified in the plane stress case, 
then the plastic domain would be a thin ellipse at the end of the crack with a major axis 

perpendicular to the line of the crack in the plane strain case. There exist also analogous 

papers abroad. All these researches show that the structure of the edge of the crack does 
not at all agree with the model in which cohesive forces act on the lips of the crack 
clearance. 

It is remarkable that the fundamental problem on crack development and stability in 

brittle bodies turns out to be simpler when the model of an elastic body at the location 

of the stress concentration is inapplicable than the problem of high stress concentration 
without fracture (0) and of the generation of fracture. This jump in the theory turns out 
to be possible because of application of the energy equations in which global energies 
occur. 

It turns out to be possible to calculate these energies with an accuracy needed in prac- 
tice by using approximate methods in which it is not required to find the detailed mech- 
anisms of the strain and stress fields at the locations of stress concentration. 

Starting with the universal energy conservation laws and thermodynamic principles, a 
large number of specific examples with analogous situations can be indicated in physics 
and mechanics. 

Thus, in many cases in classical gas dynamics the shockwave structure need not be 

known. To determine the ideal efficiency of a Carnot cycle it is not required to know 
the properties of the working fluid or the arrangement of the appropriate machine, etc. 
Let us recall that the great advantage of extensive utilization of such “ideal models” as 

a material point, absolute solid, etc., is explained by the insignificance of many details 

in a number of fundamental problems. 

The general assertion that in every real success in the cognition of nature we encounter 
this kind of insensitivity to ever-existing details and mechanisms hidden from us. is pro- 

bably correct. 
The establishment of the remarkable governing effects, and their physical character- 

istics on which crack propagation depends, is contained in papers DO - 133. 
Their fundamental idea is associated with the fact that independently of the concrete 

mechanism of physical interactions at the ends of the slit, the total expenditure of energy 
in rupture, a characteristic alien to the model of an elastic body, is of fundamental value. 

At present there are no theoretical computations of this energy in the physical modelling 
of fracture, but it is determined easily from tests. 

According to Irwin nl, 12],the energy expenditure in fracture is expressed in terms of 
the critical value of the constant Kc in (1). Irwin introduced the constant Kc as a physical 

l ) The stress concentration associated with the appearance of complex properties of the 
material. not described by Hooke’s law is understood here. 
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characteristic corresponding to the propagation of fracture at K = K, and the conversion 
of the slit into a crack thereby. The coefficient K originates as a mathematical charac- 

teristic of the asymptotic behavior of the elastic field in the approximate linearized 
solution of problems of elasticity theory in formulation II. The mechanical meaning of 

K, is made apparent from the energy equations. 
This approximate solution does not describe details of the strain near the ends of the 

crack, but its asymptotic behavior near the ends of the crack, associated with the value 

of the constant K,, correctly determines the expenditure of the volume elastic energy and 
the influx of external energy which figure in the energy equations for the body as a whole 
in describing crack propagation phenomena. 

No refinements or additions have been introduced in the formulation of elastic prob- 

lems of cracks in brittle solids since the time of Griffith and Irwin, and most importantly 
this is the only theory corresponding to experiment for the solid as a whole when the 

domain in which elasticity theory is violated is negligibly small. 

Now, let us turn to remarks concerning the ideas advocated and expressed in the paper 
by Raizer. 

1”. Firstly, the elasticity theory problem of a thin elliptical crack formulated 
above is discussed on pp. 329 and 330. Raizer writes: ‘I.. . stresses and strains near the 
edge of the crack are infinite for any (therefore even for an elliptical slit in the prob- 

lem of stress concentration in the absence of discontinuities. E. M, ) finite loadings and 
slit dimensions. Since a real body sustains only stresses which do not exceed a definite 

limit, it hence follows that a body weakened by a slit shoud be fractured for any small 
loadings. ” ( * ) 

Raizer sees a fundamental contradiction here, and does not notice that this circum- 
stance is connected with linearization. Further he writes: “This question interested 

many physicists and mechanicians who tried to explain the appearance of physically 
improbable singularities of the crack edge which follow from the theory of roundness of 
the profile and unboundedness of the stresses. ” Following Barenblatt and some other 
authors, Raizer repeats this idea many times and considers these “physically inadmissible” 

phenomena as the result of unsuitable physical modelling. The meaning and purpose of 

constructing perfected models are seen to be the introduction of actually-existing phy- 
sically-real appropriate cohesive forces applied to the lips of the slit at its edges 
while retaining the approximate formulation II for the solution 
of the elastic problem. (**) 

*) This erroneous assertion is a basis in the paper by Raizer and in papers of other 
authors. The authors forget that within the scope of elasticity theory there are diverse 

mathematical solutions of problems (rough approximate or more accurate) for the same 
physical formulation. 
**) Let us emphasize that cohesive forces are introduced in the modelling they proposed, 

which are applied to the lips of the discontinuities already formed for s’< I (2 is the 
coordinate of the end of the slit). The work of precisely these cohesive forces (not acting 
on 6,s) is considered as the governing energy expenditure when the slit area is enlarged 
by 6s . Later, the doubtful assumption that the work of general forces on a newly formed 

element of the discontinuity is a higher order infinitesimal than 8s is utilized. 
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In this regard Raizer writes: “The introduction of cohesive forces allowed an expla- 

nation of the reason for the existence of infinite stresses (I E. M.) at the ends of the 

cracks, which are inherent to the energy approach.the elimination of these unreal infini- 

ties (1 E. M.) in a physically correct manner, and the clarification (? h’. iM.) of details 

of the configuration (profile) of the ends of the cracks where, intrinsically, the process of 

material fracture takes place. ” 

However, the most important conclusion is that without these cohesive forces, the infi- 

nities obtained in the approximate solution by the method of Solution II, are not the 

result of physical modelling but the result of the approximate mathematical computation 

because of the inadmissibility of the linearization method and the violation of Hooke’s 

law in some domain at the crack edges. 

There is therefore direct misunderstanding of the fact that the sins of the method of 

computation are not the sins of the physicists and that these calculational inaccuracies 

cannot possibly be corrected by means of the “cohesive forces”. 

It can certainly be said that the motivation they present for introducing a model with 

cohesive forces by referring to infinity in the linearized problem is just a “psychological 

motive”. In reality, independently of this, it could be more correctly said that such 

modelling is proposed of the fracture edge for which everything is “satisfactory” from 

the physical viewpoint, and also, most importantly, for which the linearized formulation 

II becomes completely acceptable. 

In this connection it is evident that for very small external loadings, when the proh- 

lem formulations I and III of the theory of elasticity on stress concentration are abso- 

lutely valid and correspond well to reality, no cohesive forces applied to the lips of the 

slit are needed, and not even physically. 

As regards loadings not small, or almost ultimate loadings resulting in expansioIl 
of the crack, it is then evident that the linearized formulation of the problem near the 

edge is actually also unacceptable in substance, and that as the external loadings increase 

far in advance of the bond ruptures at the atomic level, the macroscopic properties of 

the material at the sharply curved edge of the boundary of the solid are not described 

by an elasticity theory with small strains and Hooke’s law-( * ) 

In some questions (such as crack generation, the theoretical determination of energy 

in fracture, etc. ) which were not examined in the papers being criticized, a study of the 

detailed phenomena at the locations of stress concentration and at the edge of cracks 

is important allcl needed. To do this it is necessary to develop appropriate theories 

taking account of the nonlinear and inelastic properties of the materials. There are 

examples of such theories in [8, 14, 151. Therefore we are in favor of studying details 

when needed, but only in a wellfounded manner. 

It has been remarked above that conservation of the linearized formulation of the 

problem for a correct modelling of the details at the edge of a crack is generally unac- 

ceptable. ._ 

*) A Hooke boundary of the elastic domain can be introduced at tile edge of a crack, 

and surface forces on this boundary can he considered as “cohesive forces”, hut in the 

general case it is impossible to consider this boundary as a continuation of the discon- 

tinuity in a rectilinear crack [8, 91 and to apply the linearized formulation of the prob- 

lem II to analyze the phenomena at the edge of the crack. Likewise, it is impossible to 

do this even for small loadings to study the stress concentration when the elastic model 

is applicable. 
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However, in some particular cases (the model of Leonov 173 and Panasiuk @l] X such 

modelling is still possible when the domain of inapplicability of elasticity theory is a 
negligibly thin plastic layer of length d located on the continuation of the crack. But 
in this case, when d is finite, the Irwin theory and its criteria are unacceptable. Let us 

recall that only some other foundation for the Irwin criterion for d/t .=: 0 is mentioned 

in the research being discussed, 
If details at the edge of the crack are not taken into account, then for small d we can 

set d = 0 directly and to utilize the Irwin theory; if the details are important for very 
small d , then it is impossible to recognize the described models with appropriate cohe- 
sive forces as physically founded. The foundation of a theory connected with the elimi- 

nation of mathematical infini.ties originating because of the approximate nature of the 
mathematical solutions by using the introduction of appropriate cohesive forces, cannot 

possibly be considered satisfactory. 

Therefore, the jargon of infinite stresses in elasticity theory customarily used, which 
is connected actually only with the approximate methods of solution and not with the 

physical modelling. was taken as a physical concept which generated a protesting dissa- 

tisfaction among some “physicists”. 
Rut. most importantly, all this modelling yields nothing new, generally, in the resear- 

ches under discussion from the viewpoint of the problems to he posed and solved within 
the scope of elasticity theory with the simple condition K < Kc. The Barenblatt “theo- 

ry” can merely be considered as some doubtful interpretation of the correct and clear 
Irwin condition (K < Kc) established earlier. 

The formulation of problems on cracks in brittle and quasi-brittle bodies is kept ex- 
actly according to Irwin, and the single change is purely terminological, the introduction 
of the new term “Barenblatt modulus of cohesion” instead of the initial term introduced 
by Irwin, the “critical coefficient of stress intensity”, for the same quantity. 

2”. In connection with the enormous pretentiousness and character of the general 

style of presentation of the various assertions, let us note the following. There are such 
sentences in the Raizer paper, which are formulated carefully and accurately as contrasted 
to previous publications : “Leonov and Panasiuk independently (barely later) proposed a 
model of a crack taking account of cohesive forces which was along the same lines, but 

not in so general and definitive a form’. From this sentence it can be deduced uninten- 

tionally that the modelling of Leonov and Panasiuk is an almost particular case of the 
Barenblatt modelling. Indeed, Leonov, Panasiuk and Dugdale assume that d is finite, and 

the cohesive forces are stresses given on the boundaries of the plastic domain, that there 

is no self-similarity at the edge of the crack and that the quantity d is determined by 

the body ~nfiguration and the external loadings. The Irwin criterion is inapplicabIe in 
their formualtion. hence this is some new theory while the Barenblatt modelling adds 

nothing new to the formulation of the elastic problem as compared with the Irwin theory. 

The modelling of Leonov, Panasiuk and Dugdale refers substantially to non-brittle bodies, 
in which the plastic properties play a principal role in the development of fracture. 

We read in Raizer’s paper: “Irwin himself considered mainiy unstable cracks and some 
of his expressions relating to cracks growing slowly as the loading increases indicate that 
he did not quite correctlyunderstatnd this matter: 

All this refers to an elemeutary question on the stability or instability of the expan- 
sion of cracks for small changes in the crack length or the external loadings_ Irwin 
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explicitly solved the appropriate problems and indicated the effect of a possible accel- 
eration or cessation of the crack expansion process. What else is necessary for compre- 
hension of this question ! (* ) 

What then occurs? The basic results of the discoverers are branded as unclear and 

unsatisfactory, they did not comprehend the essence of the question properly, and a “pro- 
per good scientific theory” is proposed, which actually contains no new results. Such 

methods are characteristic of some compilatory compositions. 
Raizer refers to the citation of the Barenblatt researches in foreign and domestic 

papers ; however, these references are not conclusive. Exactly as here, there are many 
authors abroad, who are either uncomprehending, or not investigating the essence of the 

matter, or simply trusting. Examples of unfounded references and undeserved praise are 

known to all in our and international life. It is difficult to control this phenomenon, and 

simply impossible in many cases. Needless to say, there are papers criticizing the Baren- 
blatt “theory” abroad. Besides in the Soviet papers, a true critique is contained also in 

the foreign publications of Broberg [18], Cribb and Tomkins (191. Paris and Sih c;LO]. 

Raizer does not mention this. 

3”. A strange tendency for a physicist to consider energy methods as inferior is 
clearly manifested in the Raizer’s paper. He writes: “In substance, a theory based on the 
energy approach contains some internal inconsistency” (I?). “A different “force approach” 
(?) is more perfect and internally consistent”. “The force approach permits elimination 
of the unreal peculiarities of the energy approach. ” “No additional conditions of energy 
character need be introduced in such an approach, just as the surface energy concept 
need not be introduced specially which is foreign to the theories of elasticity. ” 

But from the physical viewpoint the surface energy is connected with the very essence 

of this phenomenon. Crack tests for glass are used again and again to determine the 
density of the surface energy r21]. 

At the same time Raizer contradicting himself, devotes a great deal of attention to 

correct energy considerations. However, the most important consideration in fracture 

mechanics is that the physical energy equation must certainly be supplementary to the 
elasticity theory equations in order to establish a connection between the “critical coef- 
ficient of stress intensity” K, and the fracture energy y. Note that this connection figures 

in all the “force approaches”, including the author’s, which are developed. 

The energy approach permits a clarification of the general properties of fracture phe- 
nomena in various bodies when the interaction mechanisms in the neighborhoods and on 

the area of the fracture are different, such as brittle, quasi-brittle fracture, etc. [21]. 
Let us note that, as is known from physics, we can assert that microscopic and macrosco- 
pic interactions within “solids” can always be explained and described by utilizing a 

” force approach”. 
4“. Finally, as regards the energy relations. Let 5 denote the elastic volume energy 

of some part of the body or of the body as a whole, defined by the strain state of the body, 

and evaluated by integration over the volume under consideration. 
First, generally we cannot consider the energy u as the total body energy for static 

states of the body in physics, and second, increments in the energy CJ can OCCuI not only 

l ) Let us mention that Obreimoff [lS] in 1930 in our country, and Gilman lJ73 abroad 
in addition to Irwin studied stable cracks in conformity with the energy representations 
of Griffith. 
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because of the work of the macroscopic forces. 
Within the scope of elasticity theory the energy U can be identified with the total 

energy. However, we can not consider that the variation 8U will always vanish under 

constant loadings (in particular, when taking account of heat conductivity, in phase tran- 
sitions, and also in the expansion of discontlnuities. etc. ). 

The correct formula (~%=const = (1 - Y”) E-'Ka6S (2) 

is presented in the Raizer paper, where K is the stress intensity coefficient corresponding 
to given external loadings on the edge of a given crack in (1). and 15s is the increase in 

crack area at the considered point of its edge. 
This formula is an elasticity theory formula which is always valid. There are published 

derivations of this formula relying just on elasticity theory equations. 
Even Griffith proceeded from the expression for (6U)p=const # 0 in specific examples ! 

This is precisely the essence of crack theory ! Irwin established (2) to calculate the Grif- 

fith energy expenditure. Furthermore, Raizer writes equation (23) (p. 343) p] as some 

postulate without any derivation ( l ) 

@Q+Ons.t = 0 (3) 

In deriving (2) and in utilizing (3) the variations are understood exactly in the same 

sense. 

Formula (3) contradicts formula (2). It is impossible to prove that (3) is also valid 

together with (2). since (2) is true for K + 0 and for nowhere does it follow that K should 
equal zero (although Barenblatt tries to prove condition (3) within the scope of elasticity 
theory c22] ), We can only assume simultaneous compliance with (2) and (3) as some 

additional condition, and then this implies that K = 0 is a mathematical expression for 
the condition of finiteness of the stress in the linearized approximate solution ( l * ) . 

We therefore deal with two equivalent assumptions 

either (I~U)~=~~,_.. = 0, or K=O (4) 

But is there any proof here ? No ! There is only the trivial assertion about the equi- 

l ) The difference in energy in conditions (2) and (3) is understood to be in displacements 
corresponding to two actual equilibrium states while in the general case the energy vari- 

ations in the principle of possible displacements are written in virtual displacements 

consistent with the constraints. Hence, 6U = &4 # 0 in the principle of possible dis- 
placements, where 6A is the work of all the external forces on the virtual displacements. 
This circumstance is not reflected correctly by Raizer. nor in all the works of Barenblatt 
relative to this question. The energy variations therein are examined on the actual rather 

than the virtual displacements, hence condition (3) for continuous displacements is not 
the principle of possible displacements, but is simply a consequence of the uniqueness 
of the solution of elasticity theory since under constant loadings and in the absence of 

fracture, the displacements at two equilibrium positions can differ only in the displace- 
ments of a rigid body. In this connection, (3) is trivial for K-O . 

l * ) The introduction of cohesive forces on the lips of the slit and the condition K = 0 
are not equivahnt. In general K # 0 in the presence of cohesive forces and only for 
special appropriate cohesive forces is the equality K = 0 valid. 
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valence of the situation (4) resulting from (2). But is (3) generally valid? Generally this 
equation is not valid since the formula (2), in which K + 0 for actually constructed 
solutions of crack theory, has been proved rigorously correct. 

Condition (3) is obtained from the formulation of (2) only for K = 0, i. e. when the 
proof is assumed a priori. 

Therefore, in principle, it is impossible to prove anything here,and if the matter redu- 
ces to assumptions, the most explicit assumption is the one (not the physical, but the 

mathematical one associated with the method of approximate solution) about the finite- 

ness of the stresses in the linearized solution, which can be assured only by utilizing arti- 
ficially introduced appropriate “cohesive forces” applied to the lips of the slit, whose 
properties are specified by the approximateness of the method of solution. 

Hence, let the reader himself asses the Barenblatt declaration ( [22]. p. 322](*) : “Thus, 
the condition of the finiteness of the stresses at the end of the crack and the smooth join- 

ing of the opposite sides of the crack at its ends was obtained from the fundamental prin- 
ciple of statics - the principle of virtual displacements. ” Other authors, Sneddon [23], 
for example, have made analogous statements. 

The essence of the principal assertions in the paper of Raizer has been examined above. 

An explanation analogous to that given in Sect. 4’ with all these and other details has 
already been given in @ - 51. Nevertheless, Raizer took it upon himself to make the 
rhetorical remark : “Precisely this point of the theory, the question of the stationarity of 

the elastic potential, for some reason has not been comprehended.. . ” 
In this connection, the possibility has not been excluded that the sense of the absolutely 

elementary and simple explanation given above may also turn out to be incomprehen- 
sible to those not wishing to comprehend the actual essence of the matter. The critical 

remarks of a number of authors, published earlier, have not been given proper attention : 
the Raizer paper under consideration is an illustration of this. 
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